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The relation, first written by Kolmogorov, between the third-order moment of the
longitudinal velocity increment δu1 and the second-order moment of δu1 is presented
in a slightly more general form relating the mean value of the product δu1(δui)

2,
where (δui)

2 is the sum of the square of the three velocity increments, to the second-
order moment of δui. In this form, the relation is similar to that derived by
Yaglom for the mean value of the product δu1(δθ)2, where (δθ)2 is the square of the
temperature increment. Both equations reduce to a ‘four-thirds’ relation for inertial-
range separations and differ only through the appearance of the molecular Prandtl
number for very small separations. These results are confirmed by experiments in a
turbulent wake, albeit at relatively small values of the turbulence Reynolds number.

1. Introduction
Starting with the Kármán–Howarth (1938) equation, Kolmogorov (1941) wrote

an equation relating third-order moments of the longitudinal velocity increment
δuL ≡ uL(x)−uL(x0) to second-order moments of δuL where the subscript L indicates
the direction of the separation vector r (= x−x0). If uL and r = |r| are identified with
u1 and r1, the x1 components of ũ (≡ ui) and r (≡ ri), the equation may be written as

〈(δu1)
3〉 = 6ν

d

dr1
〈(δu1)

2〉 − 4
5
〈ε〉r1, (1.1)

where 〈ε〉 is the mean dissipation rate of the turbulent kinetic energy (angular brackets
denote ensemble averages), ν is the kinematic viscosity of the fluid. Strictly, (1.1)
is not exact for isotropic turbulence with zero mean velocity since it lacks both an
unsteady term (decaying turbulence) and a forcing term (to maintain a statistically
steady state). The correct form of the equation for decaying turbulence was given
in Batchelor (1947) and Landau & Lifshitz (1959); see also Lindborg (1996). In
his treatment of what he calls the Kármán–Howarth–Monin relation, Frisch (1995)
included a random forcing term, active only at large scales, which is stationary in time
and homogeneous in space. The contribution of this term to (1.1) is expected to be
small when r1 is small compared with the length scale of the force and the Reynolds
number is sufficiently large (Nelkin 1994). Monin (1959) relaxed the assumption
of isotropy used in (1.1), to one of local isotropy (see Monin & Yaglom 1975).
However Lindborg (1996) has shown that the pressure-velocity correlation terms are
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erroneously omitted on p. 402 of Monin & Yaglom. The relaxation is evidently
important since the validity of (1.1) now hinges only on the small-scale structure
of the turbulence being isotropic, an expectation which seems reasonable when the
Reynolds number is sufficiently large. In the inertial range (η � r1 � L, where η and
L are the Kolmogorov and integral length scales respectively), (1.1) reduces to

〈(δu1)
3〉 = − 4

5
〈ε〉r1 (1.2)

which is sometimes referred to as the ‘four-fifths’ law (e.g. Vainshtein & Sreenivasan
1994). In the limit r1 → 0, (1.1) can be reduced, after applying a Taylor series
expansion about r1 = 0, and ignoring terms of order (r4) or greater, to〈(

∂u1

∂x1

)3
〉

= −2ν

〈(
∂2u1

∂x2
1

)2
〉
. (1.3)

Relation (1.3) represents the isotropic form of the equality between the production of
vorticity through vortex stretching and the viscous diffusion of vorticity. In isotropic
turbulence, 〈ε〉 is given by

〈ε〉 = 15ν

〈(
∂u1

∂x1

)2
〉
. (1.4)

There has been significant experimental support for both (1.2) and (1.3) in globally
anisotropic shear flow turbulence, with 〈ε〉 estimated via relation (1.4) (e.g. Monin
& Yaglom 1975). Further, (1.2) and (1.3) have been verified not only at atmospheric
values of the turbulence Reynolds number Rλ but also when Rλ is quite small. The
earliest verification of (1.3) is due to Batchelor & Townsend (1947) in grid turbulence
with Rλ in the range 20–60. In theory, one would not have expected local isotropy to be
a good approximation at small Rλ; in fact, Durbin & Speziale (1991) have suggested
that local isotropy is strictly not consistent with the Navier–Stokes equations even
at infinitely large Rλ when the mean shear is not zero. In practice, isotropy appears
to be closely approximated by the smallest scales when the shear is small (e.g. Kim
& Antonia 1993; Antonia & Kim 1994). Equation (1.1) has received experimental
support with r1 varying between η and inertial-range scales for similar values of Rλ
for which (1.2) and (1.3) have been verified. Although there is experimental evidence
which suggests that (1.1), (1.2) and (1.3) are not satisfied when local isotropy is
violated, for example in near-wall turbulence, their verification for small Rλ requires
some investigation. A possible reason may be that these relations are not sensitive
tests of local isotropy; alternatively, it may be argued that local isotropy is only a
weak assumption.

The previous considerations have led us to re-examine the assumptions needed to
arrive at (1.2) and (1.3). An equation for 〈δu1(δui)

2〉 (repetition of indices implies
summation) is derived in §2. It is noted that this equation bears a close analogy to
Yaglom’s (1949) equation

〈δu1(δθ)2〉 = 2κ
∂

∂r1
〈(δθ)2〉 − 4

3
〈εθ〉r1, (1.5)

where θ is the instantaneous temperature fluctuation and δθ is the temperature
increment θ(x) − θ(x0). In (1.5), κ is the thermal diffusivity and 〈εθ〉 is the mean
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dissipation rate for 〈θ2〉/2 which, for isotropic turbulence, is given by

〈εθ〉 = 3κ

〈(
∂θ

∂x1

)2
〉
. (1.6)

The assumptions embodied in (1.5) are briefly considered in §3. In the inertial range,
(1.5) reduces to

〈(δu1)(δθ)2〉 = − 4
3
〈εθ〉r1. (1.7)

i.e. a ‘four-thirds’ law. When r1 → 0, (1.5) becomes, by applying a Taylor series
expansion about r1 = 0 and ignoring terms greater than or equal to order (r4

1),〈(
∂u1

∂x1

)(
∂θ

∂x1

)2
〉

= −2

3
κ

〈(
∂2θ

∂x2
1

)2
〉
, (1.8)

which expresses a balance between the production of εθ due to the stretching of the
temperature gradient field by the turbulent strain field and the dissipation rate or
molecular smoothing of the temperature gradient field (Wyngaard 1971).

The analogy between the equation for 〈δu1(δui)
2〉 and (1.5) follows from the

analogous forms of the transport equations for 〈(δui)2〉 and 〈(δθ)2〉 or, as was pointed
out by Fulachier (1972) (also, Fulachier & Dumas 1976, and Fulachier & Antonia
1984) the similarity between the transport equations for the two-point correlations
〈ui(x)ui(x0)〉 and 〈θ(x)θ(x0)〉. Experimental verification for the analogous forms of
(1.7) and (1.8), obtained by replacing θ by ui and κ by ν, is provided in §5 and §6
respectively, using measurements in a turbulent wake.

2. Third-order velocity structure function
We start with the incompressible Navier–Stokes equations at points x and x0:

∂tui + uα∂αui = −∂ip+ ν∂2
αui, (2.1)

∂tu0i + u0α∂0αu0i = −∂0ip0 + ν∂2
0αu0i, (2.2)

where ui and u0i are the instantaneous velocities at x and x0, p and p0 are the kinematic
pressures at x and x0, ∂t ≡ ∂/∂t, ∂α ≡ ∂/∂xα, ∂0α ≡ ∂/∂x0α and ∂2

α is the Laplacian
∂2/∂x2

α. Recalling that ui depends only on x and u0i depends only on x0, subtraction
of (2.2) from (2.1) and re-arrangement of some of the terms yields an equation for
the velocity increment δui ≡ ui − u0i:

∂tδui + δuα
∂(δui)

∂rα
+ u0α(∂α + ∂0α)δui = −(∂i + ∂0i)δp+ ν(∂2

α + ∂2
0α)δui. (2.3)

The third term on the left-hand side is absent in (22.14) of Monin & Yaglom (1975),
in which the left-hand side is written with respect to a moving frame of reference
whilst the right-hand side is with respect to a fixed frame of reference. All terms in
(2.3) are for the same fixed reference frame.

In general, the velocity increment δui depends on the separation ri ≡ xi − x0i and
time t. Multiplying (2.3) with 2δui and averaging, and noting that 4〈δui∂2

αδui〉 =
2〈∂2

α(δui)
2〉 − 4〈(∂αui)2〉 results in

∂

∂t
〈(δui)2〉+

∂

∂rα
〈δuα(δui)2〉 = 2ν

∂2

∂r2
α

〈(δui)2〉 − 4ν〈(∂αui)2〉 − 2〈δui(∂i + ∂0i)δp〉. (2.4)
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In arriving at (2.4), we have used the fact that xi and x0i are independent;
homogeneity and incompressibility have also been used. The pressure term is zero
because

〈δui(∂i + ∂0i)δp〉 = 〈∂i(δuiδp)〉+ 〈∂oi(δuiδp)〉
and, since ∂i ≡ ∂/∂ri and ∂0i ≡ −∂/∂ri when applied to two-point averages, the terms
on the right-hand side of the above equality cancel each other (a slightly different
approach was used by Hinze (1959) for eliminating the pressure term, see p. 259).
Order of magnitude arguments suggest that the first term on the left-hand side of
(2.4) becomes negligible compared with the other terms in that equation when the
Reynolds number increases (e.g. Lindborg 1996). With these simplifications, (2.4)
reduces to

∂

∂rα
〈δuα(δui)2〉 = 2ν

∂2

∂r2
α

〈(δui)2〉 − 4ν〈(∂αui)2〉. (2.5)

Since ν〈(∂αui)2〉 can be identified with the average turbulent energy dissipation rate
〈ε〉 and −4〈ε〉 ≡ − 4

3
∂(〈ε〉rα)/∂rα, (2.5) becomes

∂

∂rα
〈δuα(δui)2〉 = 2ν

∂2

∂r2
α

〈(δui)2〉 − 4

3

∂

∂rα
(〈ε〉rα). (2.6)

Equation (2.5) is identical to (22.15) in Monin & Yaglom (written here using the
present notation)

∂

∂rk
〈(δuiδujδuk)〉 = 2ν

∂2

∂r2
k

〈δuiδuj〉 − 4
3
〈ε〉δij

after applying the contraction i = j. It should be noted that Frisch (1995) has derived
a similar result (equation 6.8, p. 78) except for the inclusion of a random forcing
function term. In the inertial range, Frisch obtains (using our notation)

−1

4

∂

∂rα
〈(δui)2δuα〉 = 〈ε〉,

which is equivalent to (2.6) when ν is neglected.
Equation (2.6) can now be projected onto the x1-direction using isotropy. The

result is (
2

r1
+

∂

∂r1

)
〈δu1(δui)

2〉 =

(
2

r1
+

∂

∂r1

)[
2ν

∂

∂r1
〈(δui)2〉 − 4

3
〈ε〉r1

]
. (2.7)

As was noted by Kármán & Howarth (1938) – see also Monin & Yaglom (p. 122) –
the only solution of the equation(

2

r1
+

∂

∂r1

)
f(r1) = 0

which has no singularity at r1 = 0 is f(r1) = 0. The solution of (2.7) is then

〈δu1(δui)
2〉 = 2ν

∂

∂r1
〈(δui)2〉 − 4

3
〈ε〉r1. (2.8)

In the inertial range, (2.8) reduces to

〈δu1(δui)
2〉 = − 4

3
〈ε〉r1, (2.9)

i.e. a ‘four-thirds’ law similar to (1.7). Note that (2.9) would be identical to (1.7)
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if ui were replaced by θ and ν by κ (recall that for isotropic turbulence 〈ε〉 =
3ν〈(∂ui/∂x1)

2〉). In the limit of r1 → 0, a Taylor series expansion about r1 = 0 can be
used to lead to 〈(

∂u1

∂x1

)(
∂ui

∂x1

)2
〉

= −2

3
ν

〈(
∂2ui

∂x2
1

)2
〉
. (2.10)

This equation would be equivalent to (1.8) when ui is replaced by θ and ν by κ. For
isotropic turbulence, (13.91) in Monin & Yaglom can be used to show that, in the
inertial range,

〈δu1(δu2)
2〉 = 〈δu1(δu3)

2〉 = 1
3
〈(δu1)

3〉, (2.11)

and it follows that (2.9) reduces to (1.2). Similarly, (2.10), which applies to the
dissipative range, reduces to (1.3) since, for isotropic turbulence,〈(

∂2u2

∂x2
1

)2
〉

=

〈(
∂2u3

∂x2
1

)2
〉

= 3

〈(
∂2u1

∂x2
1

)2
〉

(2.12)

and 〈(
∂u1

∂x1

)(
∂u2

∂x1

)2
〉

=

〈(
∂u1

∂x1

)(
∂u3

∂x1

)2
〉

=
2

3

〈(
∂u1

∂x1

)3
〉
. (2.13)

Expressions (2.12) and (2.13) can be readily obtained from the sixth-order isotropic
tensor forms given in Champagne (1978).

3. Equation for 〈δu(δθ)2〉
The development here is kept brief since it is similar to that in §2. We start with

the temperature equation, written at points x and x0:

∂tθ + uα∂αθ = κ∂2
αθ, (3.1)

∂tθ0 + u0α∂0αθ0 = κ∂2
0αθ0. (3.2)

Subtraction of (3.1) from (3.2) yields, after some manipulation, an equation for δθ:

∂tδθ + δuα∂αδθ + u0α(∂α + ∂0α)δθ = κ(∂2
α + ∂2

0α)δθ. (3.3)

Multiplication with 2δθ and averaging results in

∂t〈(δθ)2〉+
∂

∂rα
〈δuα(δθ)2〉+ 〈u0α(∂α + ∂0α)(δθ)2〉 = 2κ

∂2

∂r2
α

〈(δθ)2〉 − 4κ〈(∂αδθ)2〉. (3.4)

Using arguments similar to those mentioned in the context of simplifying (2.4),
equation (3.4) can be simplified to

∂

∂rα
〈δuα(δθ)2〉 = 2κ

∂2

∂r2
α

〈(δθ)2〉 − 4κ〈(∂αθ)2〉. (3.5)

Since κ〈(∂αθ)2〉 can be identified with 〈εθ〉, the average dissipation rate for 〈θ2〉/2,
4〈εθ〉 can be replaced by − 4

3
∂(〈εθ〉rα)/∂rα and (3.5) can be rewritten as

∂

∂rα
〈δuα(δθ)2〉 = 2κ

∂2

∂r2
α

〈(δθ)2〉 − 4

3

∂

∂rα
(〈εθ〉rα). (3.6)

Note that only the assumption of homogeneous turbulence has been used to obtain
(3.6). Also, this equation is analogous to (2.6); equations (3.6) and (2.6) would be
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d U1 〈U〉 η θK 〈ε〉 〈εθ〉
(mm) x1/d (m s−1) (m s−1) Rd Rλ (mm) (◦C) (m2 s−3) (◦C2 s−1)

6.35 240 3.6 3.34 1500 40 0.64 0.01 0.0282 4.3 ×10−3

25.40 70 14.5 12.9 24500 230 0.14 0.012 8.7 0.113
25.40 70 10.0 9.2 16900 190 0.18 — 2.76 —

Table 1. Summary of experimental conditions. x1 is measured from the cylinder axis, Rd = U1d/ν,

Rλ = 〈u2
1〉1/2λ/ν, where λ = 〈U〉〈u2

1〉1/2/〈(∂u1/∂t)
2〉1/2, θK = (〈εθ〉η/uK )1/2, with uK = (ν〈ε〉)1/4.

identical if ui, ν and 〈ε〉 were replaced by θ, κ and 〈εθ〉 respectively. Equation (1.5)
follows from (3.6) by invoking the same procedure that was used to obtain (2.8) from
(2.7), i.e. by projecting onto the r1-direction using isotropy.

4. Experimental details
Measurements of all three velocity fluctuations and of θ were made on the centreline

of a turbulent plane wake, of a circular cylinder (diameter d). The floor of the working
section was adjusted so that the pressure gradient was zero. Three values of U1, the
free-stream velocity, were used although most of the results presented correspond to
U1 = 3.6 m s−2 and U1 = 14.5 m s−2; the corresponding experimental conditions are
summarized in table 1. Note that, in the context of experimental results, the angular
brackets now refer to time-averaged quantities.

At the larger Reynolds number (Rd = 24 500) Rλ was sufficiently large to expect
the establishment of a reasonable inertial range, thereby allowing (1.7) and (2.9) to be
checked. The smaller Reynolds number (Rd = 1500) was selected so as to maximize
the magnitude of η, thereby enhancing the ability to resolve the smallest scales; this
was needed for checking (1.8) and (2.10).

An X-wire was used to measure the velocity fluctuations u1, u2, u3. Fluctuations
u1 and u2 were obtained when the X-wire was in the (x1, x2)-plane; u1 and u3 were
determined with the X-wire in the (x1, x3)-plane. For all X-wire measurements, the
cylinder was at ambient temperature. The fluctuations u1 and θ were determined
simultaneously when the cylinder was heated; the surface temperature was about
120 ◦C above ambient and the mean temperature at the measurement station was
0.4 ◦C (Rd = 1500) and 0.43 ◦C (Rd = 24500) above ambient. These fluctuations
were measured with parallel single wires: a hot wire for u1 and a cold wire for
θ. The longitudinal velocity fluctuation u1 was measured in a number of different
experiments and with different wires; in all cases, the statistics of u1 and ∆u1 were in
good agreement (to within ±2%) with each other. All the hot wires were of 2.5 µm
diameter (Pt–10% Rh) with a nominal length in the range 0.5 to 0.7 mm. They were
operated in constant-temperature circuits at an overheat ratio of 0.5. The cold wire
had a diameter of 0.63 µm (Pt–10% Rh) and a length of 0.7 mm. It was operated in
a constant-current (0.1 mA) circuit.

The signals from the constant-temperature and constant-current circuits were digi-
tized using a 12 bit A-D converter. Prior to digitization, appropriate offset voltages,
amplification and low-pass filtering were applied to the signals. For the X-wires, the
filter cut-off frequency was selected to be nearly equal to the Kolmogorov frequency
fK ≡ 〈U〉/2πη (0.83 kHz at Rλ = 40 and 13.9 kHz at Rλ = 190 and 230). The sam-
pling frequency fS was chosen to be 2fK for Rλ = 230 but about 24fK for Rλ = 40,
the latter choice allowing good resolution (〈U〉f−1

S /η ' 0.26, where 〈U〉 is the local
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Figure 1. Distributions of 〈(δu∗1)3〉r∗1
−1 and 〈δu∗1(δθ∗)2〉r∗1

−1 at Rλ = 230. ◦, 〈(δu∗1)3〉r∗1
−1; �,

〈(δu∗1)(δθ∗)2〉r∗1
−1; —, equation (1.2); - - -, equation (1.7).

mean velocity) of the dissipative scales. The selection of the cut-off frequency for the
temperature signal was dictated in part by the frequency response of the cold wire
and in part by the noise characteristics of the signal. The spectrum of ∂θ/∂t was
viewed on a Hewlett Packard spectrum analyser prior to selecting fc; the procedure
adopted was that outlined in Antonia, Satyaprakash & Hussain (1982). The final
choice of fc was about 8 kHz (fc was set to 9.2 kHz for the u1 signal which was
sampled simultaneously with θ). The record duration was about 80 s, which is long
enough for the mean, variance, skewness and kurtosis of ui, θ, δui and δθ to converge
to ±5% according to the criterion suggested by Antonia & Van Atta (1978).

5. Inertial-range results
The Kolmogorov-normalized third-order moments〈(δu∗1)3〉 and 〈(δu∗1)(δθ∗)2〉 are

shown in figure 1 as a function of r∗1 for Rλ = 230. An asterisk denotes normalization
by either the Kolmogorov velocity scale uK , or the Kolmogorov (or Corrsin–Obukhov)
temperature scale θK or the Kolmogorov length scale η. The moments in figure 1
have been multiplied by r∗1

−1 to allow comparison with (1.2) and (1.7); these relations
are often used as an indicator of the extent of the inertial range as well as a test for
local isotropy in the inertial range. A modest plateau is indicated by the two data sets
in figure 1. The extent of the plateau is approximately the same in each case but the
magnitude of the plateau is smaller than 4/5 for 〈(δu∗1)3〉 and 4/3 for 〈(δu∗1)(δθ∗)2〉.
The values of 〈ε〉 and 〈εθ〉 used for normalising the data in figure 1 were inferred
from the isotropic relations (1.4) and (1.6). The results of figure 1 indicate that (1.2)
and (1.7) yield values of 〈ε〉 and 〈εθ〉 that are about 20% and 12% smaller than those
estimated via (1.4) and (1.6).

There have been several experimental attempts to verify (1.2) and (1.7) using values
of 〈ε〉 and 〈εθ〉 estimated via (1.4) and (1.6). Although it is not our intent to review
all these attempts in detail, it is reasonable to assert that typically the results fall
into two categories. They either provide good support for (1.2) and/or (1.7) e.g. Park
& Van Atta 1980; Antonia, Satyaprakash & Chambers 1982) or else they indicate
that the values of 〈ε〉 or 〈εθ〉 that satisfy (1.2) and (1.7) are somewhat smaller than
those suggested by (1.4) and (1.6) (e.g. Zhu, Antonia & Hosokawa 1995; Saddoughi
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& Veeravalli, 1994). There is no strong evidence to suggest that the magnitude of
Rλ is responsible for the differences, when they occur. The atmospheric data of Zhu
et al. (1995) were at a higher Rλ than those of Park & Van Atta (1980). In the jet
experiment of Anselmet et al. (1984), (1.2) yielded a value of 〈ε〉 which was about
12% smaller than that from (1.4) for Rλ = 536 but the two estimates were in good
agreement for Rλ = 852. The Antonia et al. (1983) data on the centreline of a plane
jet (Rλ ' 160) indicated good consistency between (1.6) and (1.7) but the value of
〈ε〉 inferred from (1.2) was nearly 50% smaller than that obtained from (1.4). The
agreement, when it occurs, between (1.2) and (1.4) or between (1.7) and (1.6), would
imply that both dissipative scales (which make a major contribution to 〈(∂u1/∂x1)

2〉)
and inertial-range scales are consistent with isotropy. While there is impressive
evidence that small scales satisfy isotropy at least when the shear is small, there is
only modest evidence that inertial scales conform with isotropy (the experiments of
Saddoughi & Veeravalli suggest that inertial range isotropy becomes more tenable
at large Rλ). Although it is difficult to accept that (1.4) and (1.6) can, in general,
yield correct values of 〈ε〉 and 〈εθ〉, there is no guarantee that (1.2) and (1.7) would
result in more reliable values for these two quantities. Although 〈(∂u1/∂x1)

2〉 and
〈(∂θ/∂x1)

2〉 are more easily measured than the third-order moments in (1.2) and (1.7),
the use of the latter equations may be more attractive as Rλ continues to increase,
i.e. as the resolution of the small scales deteriorates. A calibration experiment, e.g.
in grid turbulence where 〈ε〉 and 〈εθ〉 can be estimated from the decay rates of the
turbulent energy and temperature variance, would certainly be useful even if the large
scales are nearly isotropic. The need to extend this calibration to non-homogeneous
shear flows is all the more urgent when one recalls that, over the centreline region
of a self-preserving wake, Browne, Antonia & Shah (1987) and Antonia & Browne
(1986) found that the values of 〈ε〉 from (1.4) and 〈εθ〉 from (1.6) are about 45% and
55% smaller than those estimated from measurements of the nine major terms that
make up 〈ε〉 and all three terms included in 〈εθ〉. The relevance of the Browne et al.
result to the present wake experiment is not clear since Rλ was quite small (' 30) for
Browne et al. while the present wake flow has not yet reached self-preservation.

The third-order moment 〈(δu∗1)3〉 is replotted in figure 2 together with 〈(δu∗1)(δu∗2)2〉
and 〈(δu∗1)(δu∗3)2〉. The latter two quantities are approximately equal in the inertial
range in support of the first equality in relation (2.11). Their numerical value in the
inertial range is 4/15, as expected from isotropy, (1.2) and (2.11). The second equality
in (2.11) is not quite satisfied since 〈(δu∗1)(δu∗2)2〉 or 〈(δu∗1)(δu∗3)2〉 is about 10% larger
than 1

3
〈(δu∗1)3〉. In the inertial range, the sum 〈δu∗1(δu∗i )2〉 is somewhat smaller than the

value of 4/3, given by (2.9). The distributions, as a function of r∗1, for the three third-
order moments in (2.11) were presented by Karyakin, Kuznetsov & Praskovsky (1991)
using measurements in the return channel of the Central Aerohydrodynamic Institute
of Moscow. These data (shown in figure 3) were obtained at Rλ ' 3200, i.e. one order
of magnitude greater than in the present experiments. Correspondingly, the inertial
range exhibited by 〈(δu∗1)3〉 or 〈(δu∗1)(δu∗i )2〉 extends over one and a half decades of
r∗1. However, these quantities are smaller by about 12% and 15% respectively than
the corresponding isotropic values. The two mixed third-order moments exhibit more
scatter than 〈(δu∗1)3〉 and clearly show more departure from isotropy than the present
data; the apparent rise at small r∗1 seems anomalous.

The present values of 〈δu∗1(δu∗i )2〉 are plotted in figure 4 for comparison with
〈δu∗1(δθ∗)2〉. There is close agreement between the two moments in the inertial range,
in support of the analogy between (2.9) and (1.7). Also shown in figure 4 are data for
〈δu∗1(δu∗i )2〉 obtained in the present flow at Rλ = 190 and in the Karyakin et al. (1991)
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Rλ = 3200. ◦, 〈(δu∗1)3〉r∗1
−1; �, 〈δu∗1(δu∗2)2〉r∗1

−1; O, 〈δu∗1(δu∗3)2〉r∗1
−1; •, 〈δu∗1(δu∗i )

2〉r∗1
−1; — -

—, 〈δu∗1(δu∗2)2〉r∗1
−1 = 〈δu∗1(δu∗3)2〉r∗1

−1 = 4/15, namely (1.2) and (2.11); —, equation (1.2); - - -,
equation (2.9).

wind tunnel at Rλ = 3200 as well as atmospheric data for 〈δu∗1(δθ∗)2〉 at Rλ = 7200
(details for the latter data are given in Zhu et al. 1995). The trend of the three data
sets for 〈δu∗1(δu∗i )2〉 supports the notion that an inertial range with the same numerical
value is established in each case although its extent clearly increases with Rλ. The two
data sets for 〈δu∗1(δθ∗)2〉 are also consistent with the increased extent of the inertial
range as Rλ increases. Further, the approximate equality between 〈δu∗1(δθ∗)2〉 and
〈δu∗1(δu∗i )2〉 in the inertial range is validated rather impressively when Rλ is large.

The equality 〈δu∗1(δθ∗)2〉 = 〈δu∗1(δu∗i )2〉 or, equivalently,

〈ε〉/〈εθ〉 = 〈δu1(δui)
2〉/〈δu1(δθ)2〉, (5.1)

implies that 〈ε〉 could be estimated once the other three quantities in (5.1) are known.
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In this context, both 〈δu1(δui)
2〉 and 〈δu1(δθ)2〉 can be determined from a X-wire/cold

wire combination while 〈εθ〉 can be determined relatively accurately using a pair of
parallel cold wires (the three components of 〈εθ〉 can be estimated by either a finite
difference method or a two-point correlation method).

Whether this approach, which is considerably more involved than simply using
(1.2) or (1.4), is warranted remains to be validated, especially since isotropic estimates
of 〈ε〉 and 〈εθ〉 were used in figure 4. The relation

〈ε〉/〈εθ〉 = R〈q2〉/〈θ2〉, (5.2)

which is the definition of the time scale ratio R (e.g. Béguier, Dekeyser & Launder
1978), provides an attractive means of estimating 〈ε〉 when R (a constant, typically
' 0.5), 〈θ2〉, 〈q2〉 and 〈εθ〉 are known. There seems little doubt however that (5.1)
has a much stronger theoretical basis than (5.2). It could also be argued that (5.2)
would have a much smaller claim to universality than (5.1) since the third-order
moments which feature in (5.1) are less likely to feel the influence of initial conditions
than the variances in the right-hand side of (5.2). The inertial-range behaviours of
〈(δu1)(δui)

2〉 and 〈(δu1)(δθ)2〉 are not affected by the intermittency of the dissipation
fields. Frisch (1995) noted that the four-fifths law constitutes a kind of boundary
condition, presumably in the sense of a constant, on theories of turbulence; obviously,
the same can be said about the four-thirds laws represented by (2.9) and (1.7).

6. Dissipation-range results
In this section, we consider the limiting forms of (2.8) and (1.5) when r1 tends to

zero. The results, given by (2.10) and (1.8) respectively, can be rewritten in normalized
form: 〈(

∂u∗1
∂x∗1

)(
∂u∗i
∂x∗1

)2
〉

= −2

3

〈(
∂2u∗i

∂x∗1
2

)2
〉
, (6.1)
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Discrepancy between
Measured Isotropic measured and isotropic

value value values

〈u∗1,1
2〉 0.067 0.067 †

〈u∗2,1
2〉 0.122 2〈u∗1,1

2〉 = 0.14 –15%

〈u∗3,1
2〉 0.121 2〈u∗1,1

2〉 = 0.14 –16%

〈θ∗,1
2〉 0.1975 — —

〈u∗1,11
2〉 0.0047 — —

〈u∗2,11
2〉 0.015 3〈u∗1,11

2〉 = 0.014 +7%

〈u∗3,11
2〉 0.014 3〈u∗1,11

2〉 = 0.014 0%

〈u∗i,11
2〉 0.0337 7〈u∗1,11

2〉 = 0.0329 +2%

〈θ∗,11
2〉 0.026 — —

〈u∗1,1
3〉 9.83× 10−3 — —

〈u∗1,1u∗2,1
2〉 4.41× 10−3 (2/3)〈u∗1,1

3〉 = 6.55× 10−3 –49%

〈u∗1,1u∗3,1
2〉 3.17× 10−3 (2/3)〈u∗1,1

3〉 = 6.55× 10−3 –107%

〈u∗1,1u∗i,1
2〉 0.0174 −(2/3)〈u∗i,11

2〉 = 0.0225 –29%

〈u∗1,1θ∗,1
2〉 0.0245 −(2/3Pr)〈θ∗,11

2〉 = 0.0237 3%

† This comparison is not meaningful since estimates of uK and η are based on isotropic values
of 〈ε〉.
Table 2. Derivative Statistics for Rλ = 40 and Comparison with Isotropy. (All quantities are
normalized by Kolmogorov scales; in this table, a more economic notation has been used for
denoting derivatives, e.g. u1,1 ≡ ∂u1/∂x1 and u1,11 ≡ ∂2u1/∂x

2
1).)

〈(
∂u∗1
∂x∗1

)(
∂θ∗

∂x∗1

)2
〉

= −2

3

1

Pr

〈(
∂2θ∗

∂x∗1
2

)2
〉
. (6.2)

The left-hand sides of (6.1) and (6.2) represent the limiting values of 〈δu∗1(δu∗i )2〉/r∗1
3

and 〈δu∗1(δθ∗)2〉/r∗1
3 as r∗1 → 0. The data in figure 5 indicate that these two quantities

asymptote to constant values for r∗1 . 1 (the smallest value of r∗1 is about 0.25,
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2φ∗θ,1 ; · · ·, k∗1
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reflecting the good spatial resolution of the present experiment for Rλ = 40). The
constant values (0.018 and 0.024 respectively) agree to within 3% with estimates of
these two quantities (table 2) obtained directly from the time series of ∂u1/∂t, ∂u2/∂t,

∂u3/∂t and ∂θ/∂t. The values of 〈(∂2u∗i /∂x
∗
1

2)2〉 and 〈(∂2θ∗/∂x∗1
2)2〉, which appear on

the right-hand sides of (6.1) and (6.2), were inferred from Kolmogorov-normalized
spectra of the time derivatives ∂ui/∂t (i = 1, 2, 3) and ∂θ/∂t. These spectra were

multiplied by k∗1
2, where k1 is the one-dimensional wavenumber, and integrated with

respect to k∗1 from k∗1 = 0 to k∗1 = 1.† The resulting values (0.0337 and 0.026,
see table 2) imply that the equalities expressed by (6.1) and (6.2) are satisfied to
within 29% and 3% respectively (table 2). While these results imply that isotropy
is not as well satisfied for velocity as for temperature, it should be noted that the
second-order derivatives on the right-hand sides of (6.1) and (6.2) weight small scales
more than the third-order moments on the left-hand sides of these equations. This
is reflected in the separations between the peaks of the cospectra and the second-
order derivative spectra shown in figure 6. In this figure, the notation is such that
Co∗

u1,1θ
2
,1

is the Kolmogorov-normalized cospectrum between (∂u1/∂x1) and (∂θ/∂x1)
2

while φ∗θ,1 is the Kolmogorov-normalized spectrum of (∂θ/∂x1). The present data for

〈(∂2u1/∂x
2
1)

2〉, 〈(∂2u2/∂x
2
1)

2〉 and 〈(∂2u3/∂x
2
1)

2〉 (table 2) satisfy relation (2.12) quite
well, which therefore suggests that isotropy of the small-scale velocity field is not
violated in the present flow, despite the small value of Rλ. Equation (2.13) indicates
that, for isotropy, 〈(∂u1/∂x1)(∂u2/∂x1)

2〉 and 〈(∂u1/∂x1)(∂u3/∂x1)
2〉 should be equal.

The present data suggest (table 2) that these terms are 49% and 107% smaller
than the value of 2

3
(〈(∂u1/∂x1)

3〉), the third term in (2.13). The discrepancies are
large and consistent with the expectation that the cospectrum, which is largest at

† This procedure is equivalent to using the sum of the spectra of the three velocity components

and the temperature spectrum and multiplying these by k∗1
4 before integrating. The present

approach was preferred because spectra of derivatives were less affected by noise than those of the
undifferentiated signals.
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relatively low wavenumbers, is more likely to be affected by the anisotropy of the
large scales. They are also consistent with the observation that cospectra (not shown
here) between ∂u1/∂x1 and either (∂u2/∂x1)

2 or (∂u3/∂x1)
2 change sign for k∗1 & 0.25.

The ratio 〈(∂u∗1/∂x∗1)3/2〈(∂2u∗1/∂x
∗
1

2)2〉 is 1.05, i.e. (1.3) is satisfied to an accuracy (5%)
comparable to that reported in previous studies (e.g. Antonia, Anselmet & Chambers
1986; Kim & Antonia 1993).

7. Conclusions and final discussion
It is generally accepted that the quantities 〈(δu1)

3〉 and 〈(δu1)(δθ)2〉 are important
in view of their direct connection to the transfer rates of (δu1)

2 and (δθ)2 from
large to small scales. For example, Frisch, Sulem & Nelkin (1978) and Anselmet
et al. (1984) argued that (δu1)

3/r1 represents the dissipation of (δu1)
2 over a time

of order r1/(δu1), i.e. typically the eddy turnover time. Similarly, Antonia et al.
(1984) suggested that δu1(δθ)2/r1 represents the dissipation of (δθ)2 over a time
of order r1/(δu1). The Kolmogorov and Yaglom equations in which 〈(δu1)

3〉 and
〈δu1(δθ)2〉 appear have provided a benchmark for small-scale turbulence models and
measurements since they indicate that these third-order moments are not affected by
the small-scale intermittency. In the present paper, we have indicated that it is more
proper – both physically and mathematically – to compare 〈δu1(δθ)2〉 with 〈δu1(δui)

2〉
than with 〈(δu1)

3〉 and have shown that Kolmogorov’s equation can be generalized,
albeit within the framework of isotropy, to a transport equation for 〈(δui)2〉. The
close similarity between (2.9) and (1.7) reflects the fact that the scalar fluctuation
is transported by the fluctuating velocity vector (e.g. Batchelor 1959) and not just
the longitudinal component of this vector. The close similarity in the inertial range
between the third-order moments 〈δu1(δui)

2〉 and 〈δu1(δθ)2〉 extends the previously
established similarity (Antonia et al. 1996), also in the inertial range, between 〈(δui)2〉
and 〈(δθ)2〉 or, equivalently, the spectral analogy between the spectra corresponding
to u2

i originally proposed by Fulachier (1972) and Fulachier & Dumas (1976). These
authors (see also Fulachier & Antonia, 1984) argued that the transport equations for
〈ui(x0)ui(x)〉 and 〈θ(x0)θ(x)〉 are analogous in the case of homogeneous turbulence.
Only homogeneity was required to derive (2.6) and (3.6), which are also analogous.
The assumption of isotropy, which is made only to project these two equations onto
the r1-direction, would therefore appear to be a weak assumption. Although (1.2),
(1.7) and (2.9) assume isotropy at all scales, it is not unreasonable to expect that,
when Rλ is sufficiently large and the mean shear is sufficiently small, inertial-range
scales will not deviate significantly from isotropy. It remains to be explored whether
the assumption of axisymmetry, which is less restrictive than isotropy but more
constraining than homogeneity, is sufficient for establishing (2.8) and (1.5).

The similarity between (2.9) and (1.7) is well supported by the present wake data at
Rλ = 230 for inertial-range separations. The atmospheric data for 〈δu1(δθ)2〉 and the
high-Rλ data for 〈δu1(δui)

2〉 obtained in a large-scale facility (Karyakin et al. 1991)
confirm this similarity over an extended inertial range. The similarity implies that
the average dissipation rates of turbulent kinetic energy and half the temperature
variance are simply related via the ratio 〈δu1(δui)

2〉/〈δu1(δθ)2〉, i.e. (5.1), for inertial-
range separations. This latter relation should be more rigorous and have wider
applicability than (5.2), which is based on the definition of the dissipation time-scale
ratio.

The similarity between (2.10) and (1.8) is in good accord with the data at Rλ = 40.
Figures 5 and 6 confirm that the similarity between 〈δu1(δui)

2〉 and 〈δu1(δθ)2〉 also
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applies to small scales. In particular, figure 6 provides a more adequate comparison,
both in terms of shape and magnitude, between the major terms in the equations
for the mean-square vorticity and the mean-square temperature gradient. This fur-
ther supports the main contribution of this paper, namely a more general form of
Kolmogorov’s equations, specifically one which describes more fully the transport of
turbulent energy in different size eddies, provides a better basis of comparison with
Yaglom’s equation.
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